

Unlike Traditional

In Reality, Identical Baselines

Main Idea:

Demand that redundant baselines give the same results and fit

Mathematically, an overdetermined system

Inputs	Parameters being fit
 n_xn_y(n_xn_y+1)/2 complex correlations 	 n_xn_y complex gains 2 n_xn_y - n_x - n_y + 1 unique baselines

$$\langle c_{ij} \rangle = g_i^* g_j y_{i-j}(t)$$
 wher $y_{i-j}(t) \equiv \langle x_i^*(t) x_j(t) \rangle$

$$\mathbf{s_i} = \mathbf{signal}$$
 measured by antenna i ; $\mathbf{g_i} = \mathbf{gain}$ of antenna i ; $\mathbf{g_i} \equiv e^{\eta_i + i\varphi_i}$ antenna i ; $\mathbf{g_i} \equiv e^{\eta_i + i\varphi_i}$ corr; $\mathbf{c_{ii}} = \mathbf{measured}$ corr

$$\langle c_{12} \rangle = g_1^* g_2 y_1$$

$$\langle c_{23} \rangle = g_2^* g_3 y_1$$

$$\langle c_{34} \rangle = g_3^* g_4 y_1$$

$$\vdots$$

$$\langle c_{14} \rangle = g_1^* g_4 y_3$$

$$\ln \langle c_{12} \rangle = (\eta_1 + \eta_2 + \ln |y_1|) + i(-\varphi_1 + \varphi_2 + \arg y_1)$$

$$\ln\langle c_{12}\rangle = (\eta_1 + \eta_2 + \ln|y_1|) + i(-\varphi_1 + \varphi_2 + \arg y_1)$$

$$\ln\langle c_{23}\rangle = (\eta_2 + \eta_3 + \ln|y_1|) + i(-\varphi_2 + \varphi_3 + \arg y_1)$$

$$\ln\langle c_{34}\rangle = (\eta_1 + \eta_2 + \ln|y_1|) + i(-\varphi_1 + \varphi_2 + \arg y_1)$$

$$\vdots$$

$$\ln\langle c_{14}\rangle = (\eta_1 + \eta_4 + \ln|y_3|) + i(-\varphi_1 + \varphi_4 + \arg y_3)$$

$$\mathbf{s_i} = \mathbf{signal}$$
 measured by antenna i ; $\mathbf{g_i} = \mathbf{gain}$ of antenna i ; $\mathbf{g_i} \equiv e^{\eta_i + i\varphi_i}$ antenna i ; $\mathbf{g_i} \equiv e^{\eta_i + i\varphi_i}$ corr; $\mathbf{c_{ii}} = \mathbf{measured}$ corr

Real Part: Gains

$$\begin{pmatrix} \operatorname{Re}\ln\langle c_{11}\rangle \\ \operatorname{Re}\ln\langle c_{22}\rangle \\ \operatorname{Re}\ln\langle c_{33}\rangle \\ \operatorname{Re}\ln\langle c_{44}\rangle \\ \operatorname{Re}\ln\langle c_{12}\rangle \\ \operatorname{Re}\ln\langle c_{23}\rangle \\ \operatorname{Re}\ln\langle c_{23}\rangle \\ \operatorname{Re}\ln\langle c_{13}\rangle \\ \operatorname{Re}\ln\langle c_{24}\rangle \\ \operatorname{Re}\ln\langle c_{14}\rangle \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \\ \eta_4 \\ \ln|y_0| \\ \ln|y_1| \\ \ln|y_2| \\ \ln|y_3| \end{pmatrix}$$

$$\text{Have this}$$

$$\text{Know this} \qquad \text{Want this}$$

$$s_i = signal measured by antenna i ; $g_i = gain of$ antenna i $g_i \equiv e^{\eta_i + i\varphi_i}$ corr; $c_{ii} = measured corr$$$

Real Part: Gains

$$\begin{pmatrix} \operatorname{Re}\ln\langle c_{11}\rangle \\ \operatorname{Re}\ln\langle c_{22}\rangle \\ \operatorname{Re}\ln\langle c_{33}\rangle \\ \operatorname{Re}\ln\langle c_{44}\rangle \\ \operatorname{Re}\ln\langle c_{12}\rangle \\ \operatorname{Re}\ln\langle c_{23}\rangle \\ \operatorname{Re}\ln\langle c_{24}\rangle \\ \operatorname{Re}\ln\langle c_{24}\rangle \\ \operatorname{Re}\ln\langle c_{14}\rangle \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \\ \eta_4 \\ \ln|y_0| \\ \ln|y_1| \\ \ln|y_2| \\ \ln|y_3| \end{pmatrix}$$

$$\mathbf{d} \qquad \qquad \mathbf{A} \qquad \qquad \mathbf{b}$$

$$\hat{b} = [A^t A]^{-1} A^t \vec{d}$$

 $s_i = signal measured by antenna i ; <math>g_i = gain of$ antenna i $g_i \equiv e^{\eta_i + i\varphi_i}$

corr: c;; = measured corr

A Problem With Degeneracies

$$\hat{b} = [A^t A]^{-1} A^t \vec{d}$$

Real part (gains):

No knowledge of absolute gain.

Imaginary part (phases):

- No knowledge of absolute phase.
- No knowledge of x-tilt.
- No knowledge of y-tilt.

$$\mathbf{s_i} = \mathbf{signal}$$
 measured by antenna i ; $\mathbf{g_i} = \mathbf{gain}$ of antenna i ; $\mathbf{g_i} \equiv e^{\eta_i + i\varphi_i}$ corr; $\mathbf{c_{ii}} = \mathbf{measured}$ corr

 $s_i = signal measured by antenna i ; <math>g_i = gain of$ antenna i $g_i \equiv e^{\eta_i + i\varphi_i} \frac{a_{\text{III}}}{\text{corr; } c_{\text{ii}} = \text{measured corr}}$

 $s_i = signal measured by antenna i ; <math>g_i = gain of$ antenna i $g_i \equiv e^{\eta_i + i\varphi_i} \frac{\text{anterma}}{\text{corr}; c_{ii}} = \text{measured corr}$

 $s_i = signal measured by antenna i ; <math>g_i = gain of$ antenna i $g_i \equiv e^{\eta_i + i\varphi_i} \frac{a_{\text{IIICIIII}}}{\text{corr; } c_{\text{ii}} = \text{measured corr}}$

Weighted Fit

$$\hat{b} = [A^t W A]^{-1} A^t W \vec{d}$$

$$W_{ij} = \delta_{ij} |c_i|^2$$

 $s_i = signal measured by antenna i ; <math>g_i = gain of$ antenna i $g_i \equiv e^{\eta_i + i\varphi_i} \frac{a_{\text{IIICIIII}}}{\text{corr; } c_{\text{ii}} = \text{measured corr}}$

Some Bias

Differences Between This and Traditional Calibration

Traditional Scheme Redundant Baselines Use closure phases Any sky signal can be used for Amplitude (gain) calibration calibration requires Redundancy point source provided by Modeling may be identical baselines required

Summary

- Redundant baselines provided by omniscopes can be exploited for calibration
- Proposed automatic calibration scheme works on simulated data
- Using redundant baselines allows one to sidestep certain problems with traditional techniques (like the necessity of having isolated point sources).